Asia Noise News

Human Hearing

Binaural hearing allows for localizing the source of the sound, suppressing noise, example to better understand speech. To localize sound there is an important aspect of auditory perception that allows us to adjust to the room, namely spatial hearing. There are two processes in localizing sounds in humans, monaural cues and different cues.

  • Monaural Cues

Monaural cues are how each ear translates the captured sound signal. Monaural cues are the result of a convolution of sound sources with head-related transfer function (HRTF) impulses. Head-Related Transfer Function (HRTFs) is a form of transformation of sound wave propagation from the source to the ear or Head-Related Impulse Response (HRIR). HRTF is also defined as a form of modification of a sound from a certain direction that reaches the ear. This transformation involves diffraction and reflection from the anatomy of the ear. HRTF also depends on the location of the sound source relative to the listener so that it can determine the sound source.

  • Difference Cues

Difference cues are how the difference between two ears translates to sound signals. These differences cues contain information on International Time Difference (ITD) and Interaural Level Difference (ILD). ITD is the difference in the arrival time of the left and right ear sound waves while ILD is the difference in pressure level between the left and right ears. Based on Duplex Theory, ITD values ​​are used for localizing sounds at low frequencies, which is below 1.5 kHz while ILD is used for localizing sounds at high frequencies, which is above 1.5 kHz. Environmental sounds are in the range of low frequency and high frequency so that the human auditory system uses ITD and ILD.

The basic principles in ITD are illustrated in Figure 1

Figure 1 Interaural Time Difference (ITD) principal

When the sound source is sound waves with low frequency, the propagation of sound waves will reach both ears without decreasing the sound pressure level. This is because the wavelength of sound is smaller than the dimensions of the head. However, there is a time difference received between the two ears. Therefore, sound waves at low frequencies are related to ITD.

The basic principles of ILD are illustrated in Figure 2. The ILD value is influenced by the size of the head and for sources that are very close to the head. When the sound source is in the high-frequency range where the wavelength of the sound is smaller than the dimensions of the head, the sound will reach the ears closer to the sound source. When will reach the other ear, the sound will be held up or there is a failure of propagation of sound waves for a while, this phenomenon is called an acoustic shadow. The sound that finally reaches the other ear will experience a decrease in the level of sound pressure caused by the phenomenon of acoustic shadow.

Figure 2. Acoustic shadow phenomenon at high frequency

Written by:

Adetia Alfadenata

Acoustic Engineer

Geonoise Indonesia


  1. T. Potisk, “Head-Related Transfer Function,” 2015.
  2. X. Zhong and B. Xie, “Head-Related Transfer Functions and Virtual Auditory Display,” Soundscape Semiot. – Localis. Categ., 2014
  3. W. György, “HRTFs in Human Localization : Measurement , Spectral Evaluation and Practical Use in Virtual Audio Environment,” 2002.
  4. K. Carlsson, “Objective Localisation Measures in Ambisonic Surround- sound,” 2004.
Asia Noise News

Noise, Nuisance or Danger

As an introduction to this question some basic facts about noise.

Basic noise facts

Noise is typically defined as ‘unwanted sound’. The unit for sound is the Decibel which is a value calculated with logarithms from the pressure to get a scale from 0 to 120 dB where 0 dB is the hearing threshold for a young person with healthy hearing and 120 dB is the pain threshold.

We can state that noise is a type of energy created by vibrations. When an object vibrates it causes moment in air particles. The particles will bump into each other and will generate sound waves, they are ongoing until they run out of energy.

High and low tones are perceived by our hearing due to fast and slow vibrations.

Sound needs a medium to travel and the speed of sound is around 340 meter per second. Examples of typical noise levels:

Due to the nature of the calculation of Decibels we cannot just add them together.


3 dB + 3 dB = 6 dB


10 dB + 10 dB is not 20 dB but 13 dB

The Decibel (sound pressure level) for sound in air is relative to 20 micro pascals (μPa) = 2×10−5 Pa, the quietest sound a human can hear.

The human hearing system

The human hearing system is capable of hearing sounds between 20 Hz and 20000 Hz. Below 20 Hz is called infra sound and above 20000 Hz is called ultrasounds. Both infra- and ultrasound is not audible for us. Elephants however can hear frequencies as low as 14 Hz and bats can hear frequencies up to 80000 Hz.

A special noise weighting for the human perception has been introduced in the 1930’s and called the A-weighted Decibel, dB(A). This was introduced to align the noise levels with the sensitivity and physical shape of the human hearing system.

Basic human hearing system

When sound waves enter the ear, they travel up the ear canal and hit the ear drum, the ear drum will vibrate and the three smallest bones in the human body will transfer these vibrations to the fluid in our inner ear’s sensory organ the cochlea. The sensory hair cells will vibrate which will send nerve impulses to the brain, the brain will translate these impulses for us and we perceive sound!

Dangers of noise

Noise from certain music can be a very pleasurable sound for one person and a horrific noise for another. From this fact we can see that noise is not only an absolute value but also strongly depending on the receiver’s mindset.

However, there are some clear absolute values concerning the danger levels of noise.

  • Generally accepted as safe is spending 8 hours per day in an environment not exceeding 80 dB(A)
  • NOT safe would be to spend 1 hour in a disco with levels at 100 dB(A) which are easily exceed nowadays

Apart from the obvious hearing loss there are many other issues that can arise from exposure to (too) high noise levels such as:

  • Hypertension
  • Heart disease
  • Annoyance – stress
  • Immune system – psychosomatic

The positive side to remember is that Noise Induced hearing loss is 100% preventable!!

Worldwide solutions

Governments (especially in Europe) know the actual cost of high noise exposure and they concluded that protecting their citizens from high noise exposure (during working hours, recreation as well as during sleep) is far more effective than dealing with the costs of citizens enduring high noise related illnesses, demotivation, sleep disturbance etc.

They are investing in quiet schools (optimal learning environment), quiet hospitals (patients recover a lot faster in quiet wards), implement city planning to create quite zones.

Of course, they also have strong noise regulations that are being enforced.

Acoustical societies worldwide help to create awareness and leverage noise legislations with governments.

Noise in Asia

I have been living in Asia for the last 15 years and of course I noticed it’s noisy. Noise regulations (if exist at all) are very lenient and mostly not enforced. I’m very happy to see that Acoustical Societies are coming up in Asian countries and can convince governments to invest in setting up proper noise regulations and enforcing them. I’m very happy to be able to contribute to a quieter world by creating more awareness for the dangers of noise!